Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.093
Filtrar
1.
J Drugs Dermatol ; 23(4): e104-e106, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564384

RESUMO

With the rise of Janus kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) inhibitor use in dermatologic conditions, there has been increasing hope in treating extensive and difficult-to-treat inflammatory cutaneous conditions. Today we report a case of oral lichen planus successfully treated with an oral JAK1 inhibitor, upadacitinib. This case had been unresponsive by several standard methods but responded with 70% improvement within 1 month when treated with upadacitinib.  J Drugs Dermatol. 2024;23(4):7859.     doi:10.36849/JDD.7859e  .


Assuntos
Inibidores de Janus Quinases , Líquen Plano Bucal , Humanos , Líquen Plano Bucal/diagnóstico , Líquen Plano Bucal/tratamento farmacológico , Janus Quinases , Inibidores de Janus Quinases/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico
2.
Cell Commun Signal ; 22(1): 203, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566182

RESUMO

BACKGROUND: The metabolically demanding nature of immune response requires nutrients to be preferentially directed towards the immune system at the expense of peripheral tissues. We study the mechanisms by which this metabolic reprograming occurs using the parasitoid infection of Drosophila larvae. To overcome such an immune challenge hemocytes differentiate into lamellocytes, which encapsulate and melanize the parasitoid egg. Hemocytes acquire the energy for this process by expressing JAK/STAT ligands upd2 and upd3, which activates JAK/STAT signaling in muscles and redirects carbohydrates away from muscles in favor of immune cells. METHODS: Immune response of Drosophila larvae was induced by parasitoid wasp infestation. Carbohydrate levels, larval locomotion and gene expression of key proteins were compared between control and infected animals. Efficacy of lamellocyte production and resistance to wasp infection was observed for RNAi and mutant animals. RESULTS: Absence of upd/JAK/STAT signaling leads to an impaired immune response and increased mortality. We demonstrate how JAK/STAT signaling in muscles leads to suppression of insulin signaling through activation of ImpL2, the inhibitor of Drosophila insulin like peptides. CONCLUSIONS: Our findings reveal cross-talk between immune cells and muscles mediates a metabolic shift, redirecting carbohydrates towards immune cells. We emphasize the crucial function of muscles during immune response and show the benefits of insulin resistance as an adaptive mechanism that is necessary for survival.


Assuntos
Proteínas de Drosophila , Resistência à Insulina , Vespas , Animais , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Drosophila/genética , Músculos , Vespas/metabolismo , Larva/metabolismo , Imunidade , Carboidratos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo
3.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607020

RESUMO

Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.


Assuntos
NF-kappa B , Traumatismos da Medula Espinal , Humanos , NF-kappa B/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Janus Quinases/metabolismo , Gliose/complicações , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/terapia
4.
Immun Inflamm Dis ; 12(4): e1248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607233

RESUMO

INTRODUCTION: Regulatory CD4+ T cells (Tregs) are pivotal for inhibition of autoimmunity. Primary sclerosing cholangitis (PSC) is an autoimmune cholestatic liver disease of unknown etiology where contribution of Tregs is still unclear. Activation of the JAK-STAT pathway critically modifies functions of Tregs. In PSC, we studied activation of STAT proteins and Treg functions in response to cytokines. METHODS: In 51 patients with PSC, 10 disease controls (chronic replicative hepatitis C), and 36 healthy controls we analyzed frequencies of Foxp3+CD25+CD127lowCD4+ Tregs, their expression of ectonucleotidase CD39, and cytokine-induced phosphorylation of STAT1, 3, 5, and 6 using phospho-flow cytometry. In parallel, we measured cytokines IFN-gamma, interleukin (IL)-6, IL-2, and IL-4 in serum via bead-based immunoassays. RESULTS: In patients with PSC, ex vivo frequencies of peripheral Tregs and their expression of CD39 were significantly reduced (p < .05 each). Furthermore, serum levels of IFN-gamma, IL-6, IL-2, and IL-4 were markedly higher in PSC (p < .05 each). Unlike activation of STAT1, STAT5, and STAT6, IL-6 induced increased phosphorylation of STAT3 in Tregs of PSC-patients (p = .0434). Finally, STAT3 activation in Tregs correlated with leukocyte counts. CONCLUSIONS: In PSC, we observed enhanced STAT3 responsiveness of CD4+ Tregs together with reduced CD39 expression probably reflecting inflammatory activity of the disease.


Assuntos
Colangite Esclerosante , Linfócitos T , Humanos , Interleucina-6 , Interleucina-2 , Interleucina-4 , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Citocinas , Linfócitos T CD4-Positivos
5.
Sci Rep ; 14(1): 8762, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627442

RESUMO

Metastatic colorectal cancer (CRC) is still in need of effective treatments. This study applies a holistic approach to propose new targets for treatment of primary and liver metastatic CRC and investigates their therapeutic potential in-vitro. An integrative analysis of primary and metastatic CRC samples was implemented for alternative target and treatment proposals. Integrated microarray samples were grouped based on a co-expression network analysis. Significant gene modules correlated with primary CRC and metastatic phenotypes were identified. Network clustering and pathway enrichments were applied to gene modules to prioritize potential targets, which were shortlisted by independent validation. Finally, drug-target interaction search led to three agents for primary and liver metastatic CRC phenotypes. Hesperadin and BAY-1217389 suppress colony formation over a 14-day period, with Hesperadin showing additional efficacy in reducing cell viability within 48 h. As both candidates target the G2/M phase proteins NEK2 or TTK, we confirmed their anti-proliferative properties by Ki-67 staining. Hesperadinin particular arrested the cell cycle at the G2/M phase. IL-29A treatment reduced migration and invasion capacities of TGF-ß induced metastatic cell lines. In addition, this anti-metastatic treatment attenuated TGF-ß dependent mesenchymal transition. Network analysis suggests IL-29A induces the JAK/STAT pathway in a preventive manner.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Indóis , Neoplasias Hepáticas , Neoplasias Retais , Sulfonamidas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transcriptoma , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Neoplasias do Colo/genética , Neoplasias Retais/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Quinases Relacionadas a NIMA/genética
6.
J Dermatolog Treat ; 35(1): 2338281, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38632962

RESUMO

BACKGROUND: Granuloma formation is an uncommon and persistent skin inflammatory condition caused by the injection of dermal fillers. The exact cause of this reaction is not well understood, but it may be associated with irritating components or abnormal immune function. Treating granulomas can be difficult. However, recent research has shown that Janus kinase (JAK) inhibitors hold promise as a potential therapy for refractory granulomatous diseases. OBJECTIVES: The aim was to evaluate the efficacy and safety of tofacitinib as a treatment for granulomas secondary to filler injection and the possible mechanisms were discussed and summarized. METHODS: This study focuses on three cases of patients who experienced granuloma formation after receiving filler injections and were subsequently treated with tofacitinib. The efficacy and safety of the treatment were evaluated using parameters such as photographs and monitoring for any adverse reactions. In addition, a literature review was conducted to explore the underlying mechanisms and potential effects of tofacitinib. RESULTS: All three cases recovered from swelling and nodules without side effects through the off-label use of oral tofacitinib. Existing data review reveals some approaches for cutaneous granulomatous disorders like inhibiting macrophage activation and downregulation of the JAK-STAT pathway. CONCLUSION: This report emphasizes the effectiveness of JAK inhibitors in treating granulomas caused by filler injections. Recent advancements in understanding the underlying mechanisms of granulomatous reactions have paved the way for JAK inhibitors to be regarded as a promising treatment choice. However, further research is necessary to fully assess the safety and long-term effectiveness of using tofacitinib for granuloma treatment.


Assuntos
Preenchedores Dérmicos , Inibidores de Janus Quinases , Piperidinas , Pirimidinas , Dermatopatias , Humanos , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases , Transdução de Sinais , Fatores de Transcrição STAT , Granuloma/induzido quimicamente , Granuloma/tratamento farmacológico , Dermatopatias/tratamento farmacológico
7.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611871

RESUMO

Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNß. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNß leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNß signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNß-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.


Assuntos
Amidas , Endocanabinoides , Etanolaminas , Neuroblastoma , Ácidos Oleicos , Humanos , Neuroblastoma/tratamento farmacológico , Antígeno B7-H1 , Janus Quinases , PPAR alfa , Inibidores de Poli(ADP-Ribose) Polimerases , Fatores de Transcrição STAT , Transdução de Sinais , Apoptose , Ácidos Palmíticos/farmacologia
8.
Rev Assoc Med Bras (1992) ; 70(3): e20231167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656003

RESUMO

OBJECTIVE: The aim of this study was to analyze possible alterations (morphological and inflammatory) in the ocular cells of fetuses from mothers with insulin resistance exposed to saturated fatty acids through the period of pregnancy. METHODS: Wistar female rats were induced to develop insulin resistance before pregnancy. Fetuses' skulls were collected on the 20th day of intrauterine life. The rats were separated on the first day of management into two groups according to the diet applied: control group (C): diet containing soybean oil as a source of fat; and saturated fatty acid group (S): diet containing butter as a source of fat. RESULTS: Histological and immunohistochemical analyses have been conducted. The immunohistochemical analyses of interleukin 6, suppressor of cytokine signaling, 3 and signal transducer and activator of transcription 3 did not demonstrate alterations in the expression of proteins in the fetuses of mothers fed with a saturated fatty diet. Moreover, no histopathological changes were noticed between groups. CONCLUSION: The saturated fatty diet does not induce tissue changes or activate the Janus kinase/signal transducer and activator of transcription signaling pathway during eye development in the fetuses of mothers with insulin resistance.


Assuntos
Resistência à Insulina , Janus Quinases , Ratos Wistar , Transdução de Sinais , Animais , Feminino , Gravidez , Transdução de Sinais/efeitos dos fármacos , Resistência à Insulina/fisiologia , Janus Quinases/metabolismo , Ácidos Graxos/análise , Gorduras na Dieta/farmacologia , Gorduras na Dieta/efeitos adversos , Feto/efeitos dos fármacos , Imuno-Histoquímica , Fator de Transcrição STAT3/metabolismo , Interleucina-6/análise , Interleucina-6/metabolismo , Ratos , Olho/embriologia , Olho/efeitos dos fármacos
9.
J Cardiovasc Pharmacol Ther ; 29: 10742484241248046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656132

RESUMO

Atherosclerosis is now widely considered to be a chronic inflammatory disease, with increasing evidence suggesting that lipid alone is not the main factor contributing to its development. Rather, atherosclerotic plaques contain a significant amount of inflammatory cells, characterized by the accumulation of monocytes and lymphocytes on the vessel wall. This suggests that inflammation may play a crucial role in the occurrence and progression of atherosclerosis. As research deepens, other pathological factors have also been found to influence the development of the disease. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is a recently discovered target of inflammation that has gained attention in recent years. Numerous studies have provided evidence for the causal role of this pathway in atherosclerosis, and its downstream signaling factors play a significant role in this process. This brief review aims to explore the crucial role of the JAK/STAT pathway and its representative downstream signaling factors in the development of atherosclerosis. It provides a new theoretical basis for clinically affecting the development of atherosclerosis by interfering with the JAK/STAT signaling pathway.


Assuntos
Aterosclerose , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Humanos , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo , Animais , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/metabolismo
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 465-473, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597437

RESUMO

OBJECTIVE: To explore the therapeutic mechanism of Jianpi Zishen (JPZS) granules for systemic lupus erythematosus(SLE) in light of podocyte autophagy regulation. METHODS: TCMSP, GeneCards, OMIM, and TTD databases were used to obtain the targets of JPZS granules, SLE, and podocyte autophagy. The protein-protein interaction network was constructed using Cytoscape, and the key active ingredients and targets were screened for molecular docking. In the clinical study, 46 patients with SLE were randomized into two groups to receive baseline treatment with prednisone acetate and mycophenolate mofetil (control group) and additional treatment with JPZS granules (observation group) for 12 weeks, with 10 healthy volunteers as the healthy control group. Urinary levels of nephrin and synaptopodin of the patients were detected with ELISA. Western blotting was performed to determine peripheral blood levels of p-JAK1/JAK1, p-STAT1/STAT1, LC3II/LC3I, and p62 proteins of the participants. RESULTS: Four key active ingredients and 5 core target genes (STAT1, PIK3CG, MAPK1, PRKCA, and CJA1) were obtained, and enrichment analysis identified the potentially involved signaling pathways including AGE-RAGE, JAK/STAT, EGFR, and PI3K/Akt. Molecular docking analysis showed that STAT1 was the most promising target protein with the highest binding activity, suggesting its role as an important mediator for signal transduction after JPZS granule treatment. In the 43 SLE patients available for analysis, treatment with JPZS granule significantly reduced serum levels of p-JAK1/JAK1, p-STAT1/STAT1, and LC3II/LC3I (P < 0.05 or 0.01), increased the protein level of P62 (P < 0.05), and reduced urinary levels of nephrin and synaptopodin (P < 0.05). CONCLUSION: The therapeutic effect of JPZS granules on SLE is mediated probably by coordinated actions of quercetin, kaempferol, ß-sitosterol, and isorhamnetin on their target gene STAT1 to inhibit the JAK/STAT pathway, thus suppressing autophagy and alleviating podocyte injuries in SLE.


Assuntos
Medicamentos de Ervas Chinesas , Lúpus Eritematoso Sistêmico , Podócitos , Humanos , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Janus Quinases/uso terapêutico , Transdução de Sinais , Podócitos/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Fatores de Transcrição STAT/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Autofagia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 541-552, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597446

RESUMO

OBJECTIVE: To investigate the role of JAK1/STAT3/KHSRP axis in mediating the regulatory effect of LINC00626 on progression of esophagogastric junction adenocarcinoma. METHODS: We collected surgical tumor and adjacent tissue specimens from 64 patients with esophagogastric junction adenocarcinoma and examined the expression levels of LINC00626 and KHSRP. qRT-PCR was used to detect the expressions of LINC00626 and KHSRP in 6 esophageal adenocarcinoma cell lines (OE-19, TE-7, Bic-1, Flo-1, SK-GT-4, and BE-3) and a normal esophageal epithelial cell line (HET-1A). OE-19 and TE-7 cell lines with stable LINC00626 knockdown and FLO-1 and SK-GT-4 cells stably overexpressing LINC00626 were constructed by lentiviral transfection, and the changes in proliferation, migration and invasion of the cells were evaluated using Cell Counting Kit-8 (CCK-8) assay and Transwell migration/invasion assay. The expressions of KHSRP and JAK/STAT pathway proteins in the transfected cells were detected with Western blotting. The effects of LINC006266 knockdown and overexpression on subcutaneous tumor formation and lung metastasis of OE-19 and FLO-1 cell xenografts were tested in nude mice. RESULTS: The expression levels of LINC00626 and KHSRP were significantly increased in esophagogastric junction adenocarcinoma tissues and in esophageal adenocarcinoma cells. LINC00626 knockdown obviously inhibited the proliferation, migration and invasion of esophageal adenocarcinoma cells in vitro and decreased their tumor formation and lung metastasis abilities in nude mice, while overexpression of LINC00626 produced the opposite effects. In esophageal adenocarcinoma cells, LINC0626 knockdown significantly decreased and LINC00626 overexpression strongly enhanced the phosphorylation of JAK1 and STAT3. CONCLUSION: High LINC00626 expression promotes esophageal-gastric junction adenocarcinoma metastasis by activating the JAK1/STAT3/KHSRP signal axis.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Janus Quinase 1 , Neoplasias Pulmonares , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Junção Esofagogástrica/metabolismo , Junção Esofagogástrica/patologia , Regulação Neoplásica da Expressão Gênica , Janus Quinases/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição STAT3/metabolismo , Transativadores , RNA Longo não Codificante/genética
12.
Sci Adv ; 10(12): eadl0368, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507500

RESUMO

CCR5 serves as R5-tropic HIV co-receptor. Knocking out CCR5 in HIV patients, which has occurred <10 times, is believed important for cure. JAK/STAT inhibitors tofacitinib and ruxolitinib inhibit CCR5 expression in HIV+ viremic patients. We investigated the association of JAK/STAT signaling pathway with CCR5/CCR2 expression in human primary CD4+ T cells and confirmed its importance. Six of nine JAK/STAT inhibitors that reduced CCR5/CCR2 expression were identified. Inhibitor-treated CD4+ T cells were relatively resistant, specifically to R5-tropic HIV infection. Furthermore, single JAK2, STAT3, STAT5A, and STAT5B knockout and different combinations of JAK/STAT knockout significantly reduced CCR2/CCR5 expression of both RNA and protein levels, indicating that CCR5/CCR2 expression was positively regulated by JAK-STAT pathway in CD4+ T cells. Serum and glucocorticoid-regulated kinase 1 (SGK1) knockout affected CCR2/CCR5 gene expression, suggesting that SGK1 is involved in CCR2/CCR5 regulation. If cell surface CCR5 levels can be specifically and markedly down-regulated without adverse effects, that may have a major impact on the HIV cure agenda.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Linfócitos T/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/metabolismo , Janus Quinases/metabolismo , HIV-1/fisiologia , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Linfócitos T CD4-Positivos/metabolismo
13.
Eur Rev Med Pharmacol Sci ; 28(5): 1864-1872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497869

RESUMO

Vasculitis is the inflammation of blood vessels caused by autoimmunity and/or autoinflammation, and its etiology and pathogenesis remain largely unknown. The Janus kinase (JAK) and Signal transduction Transcription Activator (STAT) signal transduction pathways are a group of molecules involved in the major pathways by which many cytokines exert and integrate their functions, and their dysregulation has been implicated in the pathogenesis of a variety of autoimmune diseases. However, current data supporting the role of the JAK/STAT pathway in the development of vasculitis is limited. In terms of treatment, glucocorticoids and immunosuppressants have been the standard therapy. However, because of the huge burden of treatment side effects, people have long waited for new treatment options. JAK inhibitors reduce the production of multiple cytokines and inhibit inflammation by targeting the JAK/STAT pathway, and have the advantage of rapidly acting in oral formulations, reducing glucocorticoid dependence and associated adverse events, especially in refractory cases. Therefore, JAK inhibitors are expected to be a promising drug for the treatment of vasculitis.


Assuntos
Doenças Autoimunes , Inibidores de Janus Quinases , Vasculite , Humanos , Janus Quinases , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Fatores de Transcrição STAT , Transdução de Sinais , Vasculite/tratamento farmacológico , Inflamação/tratamento farmacológico , Citocinas , Glucocorticoides/uso terapêutico , Fatores de Transcrição
14.
J Med Virol ; 96(4): e29522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533889

RESUMO

The tick-borne encephalitis virus (TBEV) serocomplex includes several medically important flavivirus members endemic to Europe, Asia, and North America, which can induce severe neuroinvasive or viscerotropic diseases with unclear mechanisms of pathogenesis. Langat virus (LGTV) shares a high sequence identity with TBEV but exhibits lower pathogenic potential in humans and serves as a model for virus-host interactions. In this study, we demonstrated that LGTV infection inhibits the activation of gp130/JAK/STAT (Janus kinases (JAK) and signal transducer and activator of transcription (STAT)) signaling, which plays a pivotal role in numerous biological processes. Our data show that the LGTV-infected cells had significantly lower phosphorylated STAT3 (pSTAT3) protein upon oncostatin M (OSM) stimulation than the mock-infected control. LGTV infection blocked the nuclear translocation of STAT3 without a significant effect on total STAT3 protein level. LGTV inhibited JAK1 activation and reduced gp130 protein expression in infected cells, with the viral NS5 protein mediating this effect. TBEV infection also reduces gp130 level. On the other hand, pretreatment of Vero cells with OSM significantly reduces LGTV replication, and STAT1/STAT2 knockdown had little effect on OSM-mediated antiviral effect, which suggests it is independent of STAT1/STAT2 and, instead, it is potentially mediated by STAT3 signlaing. These findings shed light on the LGTV and TBEV-cell interactions, offering insights for the future development of antiviral therapeutics and improved vaccines.


Assuntos
Fenômenos Biológicos , Vírus da Encefalite Transmitidos por Carrapatos , Animais , Chlorocebus aethiops , Humanos , Janus Quinases/metabolismo , Células Vero , Receptor gp130 de Citocina/metabolismo , Antivirais/metabolismo
15.
Sci Rep ; 14(1): 7292, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538691

RESUMO

Glioblastoma multiforme (GBM) IDH-wildtype is the most prevalent brain malignancy in adults. However, molecular mechanisms, which leads to GBM have not been completely elucidated. Granulocyte colony-stimulating factor (GCSF), Granulocyte colony-stimulating factor receptor GCSFR, and Signal transducers and activators of transcription 3 (STAT3) have been involved in the occurrence and development of various cancers, but their role in GBM is little known. Herein, we have investigated the gene and protein expression of GCSF, GCSFR, and STAT3 in 21 tissue biopsy samples and also in tumor associated normal tissue (TANT) samples derived from glioblastoma patients, which revealed significantly differential expression of these genes. To validate our findings, we performed a comprehensive integrated analysis of transcriptomic and proteomic profiling of respective genes by retrieving GBM RNA-sequence data from Genome Atlas Databases. GO and KEGG analysis revealed enrichment in disease-related pathways, such as JAK/STAT pathway activation, which were associated with GBM progression. We further performed computational docking analysis of potential drug candidate Nisin against GCSF, and the results were validated in vitro through cytotoxic activity assay using a human glioblastoma cell line SF-767 in a dose-dependent manner. Our comprehensive analysis reveals that GCSF augments glioma progression, and its blockade with anticancer bacteriocin peptide Nisin can potentially inhibit the growth and metastasis of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nisina , Adulto , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Nisina/metabolismo , Janus Quinases/metabolismo , Proteômica , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Regulação Neoplásica da Expressão Gênica
16.
Breast Cancer Res ; 26(1): 54, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553760

RESUMO

Fibroblast growth factors (FGFs) control various cellular functions through fibroblast growth factor receptor (FGFR) activation, including proliferation, differentiation, migration, and survival. FGFR amplification in ER + breast cancer patients correlate with poor prognosis, and FGFR inhibitors are currently being tested in clinical trials. By comparing three-dimensional spheroid growth of ER + breast cancer cells with and without FGFR1 amplification, our research discovered that FGF2 treatment can paradoxically decrease proliferation in cells with FGFR1 amplification or overexpression. In contrast, FGF2 treatment in cells without FGFR1 amplification promotes classical FGFR proliferative signaling through the MAPK cascade. The growth inhibitory effect of FGF2 in FGFR1 amplified cells aligned with an increase in p21, a cell cycle inhibitor that hinders the G1 to S phase transition in the cell cycle. Additionally, FGF2 addition in FGFR1 amplified cells activated JAK-STAT signaling and promoted a stem cell-like state. FGF2-induced paradoxical effects were reversed by inhibiting p21 or the JAK-STAT pathway and with pan-FGFR inhibitors. Analysis of patient ER + breast tumor transcriptomes from the TCGA and METABRIC datasets demonstrated a strong positive association between expression of FGF2 and stemness signatures, which was further enhanced in tumors with high FGFR1 expression. Overall, our findings reveal a divergence in FGFR signaling, transitioning from a proliferative to stemness state driven by activation of JAK-STAT signaling and modulation of p21 levels. Activation of these divergent signaling pathways in FGFR amplified cancer cells and paradoxical growth effects highlight a challenge in the use of FGFR inhibitors in cancer treatment.


Assuntos
Neoplasias da Mama , Transdução de Sinais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Janus Quinases/uso terapêutico , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Fatores de Transcrição STAT/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Proliferação de Células , Fatores de Crescimento de Fibroblastos/farmacologia , Linhagem Celular Tumoral
17.
Cell Rep Med ; 5(3): 101472, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508140

RESUMO

Anaplastic large cell lymphoma (ALCL) is an aggressive, CD30+ T cell lymphoma of children and adults. ALK fusion transcripts or mutations in the JAK-STAT pathway are observed in most ALCL tumors, but the mechanisms underlying tumorigenesis are not fully understood. Here, we show that dysregulated STAT3 in ALCL cooccupies enhancers with master transcription factors BATF3, IRF4, and IKZF1 to form a core regulatory circuit that establishes and maintains the malignant cell state in ALCL. Critical downstream targets of this network in ALCL cells include the protooncogene MYC, which requires active STAT3 to facilitate high levels of MYC transcription. The core autoregulatory transcriptional circuitry activity is reinforced by MYC binding to the enhancer regions associated with STAT3 and each of the core regulatory transcription factors. Thus, activation of STAT3 provides the crucial link between aberrant tyrosine kinase signaling and the core transcriptional machinery that drives tumorigenesis and creates therapeutic vulnerabilities in ALCL.


Assuntos
Linfoma Anaplásico de Células Grandes , Transdução de Sinais , Adulto , Criança , Humanos , Transdução de Sinais/genética , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transformação Celular Neoplásica , Carcinogênese/genética , Fator de Transcrição STAT3/genética
18.
Front Immunol ; 15: 1341632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444845

RESUMO

Biologics play a positive and effective role in the treatment of immune-related dermatoses. However, many other immune-related diseases have also manifested along with biologics treatment. Paradoxical reaction through immune-related dermatoses refer to the new onset or exacerbation of other immune-mediated dermatoses (mainly psoriasis and atopic dermatitis) after biologics treatment of inflammatory dermatoses (mainly psoriasis and atopic dermatitis), such as new atopic dermatitis (AD) in psoriasis (PsO) treatment and new PsO in AD treatment. A common genetic background and Inflammatory pathway are possible pathogenesis. Faced with paradoxical reactions, the choice of therapy needs to be directed toward therapies effective for both diseases, such as Janus kinase (JAK) inhibitors. The Janus kinase and signal transducer and activator of transcription (JAK-STAT) pathway plays an important role in the inflammatory pathway, and has been widely used in the treatment of AD and PsO in recent years. This article focuses on JAK inhibitors such as tofacitinib, baricitinib, ruxolitinib, Abrocitinib, upadacitinib, and deucravacitinib, to explore the possible application in treatment of paradoxical reactions. Common side effects, baseline risk factors and safety use of JAK inhibitors were discussed.


Assuntos
Produtos Biológicos , Dermatite Atópica , Inibidores de Janus Quinases , Psoríase , Humanos , Inibidores de Janus Quinases/efeitos adversos , Psoríase/tratamento farmacológico , Janus Quinases
19.
Front Immunol ; 15: 1341981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464510

RESUMO

Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that is characterized by new bone formation in the axial musculoskeletal system, with X-ray discriminating between radiographic and non-radiographic forms. Current therapeutic options include non-steroidal anti-inflammatory drugs in addition to biological disease-modifying anti-rheumatic drugs that specifically target tumor necrosis factor-alpha (TNFα) or interleukin (IL)-17. Pain is the most critical symptom for axSpA patients, significantly contributing to the burden of disease and impacting daily life. While the inflammatory process exerts a major role in determining pain in the early phases of the disease, the symptom may also result from mechanical and neuromuscular causes that require complex, multi-faceted pharmacologic and non-pharmacologic treatment, especially in the later phases. In clinical practice, pain often persists and does not respond further despite the absence of inflammatory disease activity. Cytokines involved in axSpA pathogenesis interact directly/indirectly with the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling cascade, a fundamental component in the origin and development of spondyloarthropathies. The JAK/STAT pathway also plays an important role in nociception, and new-generation JAK inhibitors have demonstrated rapid pain relief. We provide a comprehensive review of the different pain types observed in axSpA and the potential role of JAK/STAT signaling in this context, with specific focus on data from preclinical studies and data from clinical trials with JAK inhibitors.


Assuntos
Espondiloartrite Axial , Inibidores de Janus Quinases , Humanos , Janus Quinases/metabolismo , Transdução de Sinais , Inibidores de Janus Quinases/uso terapêutico , Fatores de Transcrição STAT/metabolismo , Dor
20.
Exp Mol Med ; 56(3): 711-720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486105

RESUMO

Protein arginine methyltransferases (PRMTs) modulate diverse cellular processes, including stress responses. The present study explored the role of Prmt7 in protecting against menopause-associated cardiomyopathy. Mice with cardiac-specific Prmt7 ablation (cKO) exhibited sex-specific cardiomyopathy. Male cKO mice exhibited impaired cardiac function, myocardial hypertrophy, and interstitial fibrosis associated with increased oxidative stress. Interestingly, female cKO mice predominantly exhibited comparable phenotypes only after menopause or ovariectomy (OVX). Prmt7 inhibition in cardiomyocytes exacerbated doxorubicin (DOX)-induced oxidative stress and DNA double-strand breaks, along with apoptosis-related protein expression. Treatment with 17ß-estradiol (E2) attenuated the DOX-induced decrease in Prmt7 expression in cardiomyocytes, and Prmt7 depletion abrogated the protective effect of E2 against DOX-induced cardiotoxicity. Transcriptome analysis of ovariectomized wild-type (WT) or cKO hearts and mechanical analysis of Prmt7-deficient cardiomyocytes demonstrated that Prmt7 is required for the control of the JAK/STAT signaling pathway by regulating the expression of suppressor of cytokine signaling 3 (Socs3), which is a negative feedback inhibitor of the JAK/STAT signaling pathway. These data indicate that Prmt7 has a sex-specific cardioprotective effect by regulating the JAK/STAT signaling pathway and, ultimately, may be a potential therapeutic tool for heart failure treatment depending on sex.


Assuntos
Cardiomiopatias , Pós-Menopausa , Proteína-Arginina N-Metiltransferases , Animais , Feminino , Masculino , Camundongos , Apoptose/genética , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Doxorrubicina/farmacologia , Miócitos Cardíacos/metabolismo , Pós-Menopausa/genética , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...